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Subthreshold dynamics of a single neuron from a Hamiltonian perspective
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We use Hamilton’s equations of classical mechanics to investigate the behavior of a cortical neuron on the
approach to an action potential. We use a two-component dynamic model of a single neuron, due to Wilson,
with added noise inputs. We derive a Lagrangian for the system, from which we construct Hamilton’s equa-
tions. The conjugate momenta are found to be linear combinations of the noise input to the system. We use this
approach to consider theoretically and computationally the most likely manner in which such a modeled
neuron approaches a firing event. We find that the firing of a neuron is a result of a drop in inhibition, due to
a temporary increase in negative bias of the mean noise input to the inhibitory control equation. Moreover, we
demonstrate through theory and simulation that, on average, the bias in the noise increases in an exponential
manner on the approach to an action potential. In the Hamiltonian description, an action potential can therefore
be considered a result of the exponential growth of the conjugate momenta variables pulling the system away

from its equilibrium state, into a nonlinear regime.
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I. INTRODUCTION

Path-integral formulations of dynamical systems have the
potential to shed light on the physical behavior of complex
systems that may not be obtainable through direct simulation
of a set of dynamical equations. Often, a Lagrangian ap-
proach is taken, in which one applies the principle of least
action, namely, that the most likely path taken by a system is
the one that minimizes the action. A Lagrangian approach is
naturally suited to problems that focus on the most likely
trajectories of dynamical systems which contain a random
component, such as the dynamics of neurons.

Recently, Paninski has formulated a single neuron system,
specifically an integrate-and-fire model, in terms of a La-
grangian, and demonstrated that this formalism can success-
fully predict the most likely behavior of the neuron’s mem-
brane potential between firing events [1]. This has been
tested against experimental data. Badel er al. have carried out
a similar theoretical analysis with a linear two-component
integrate-and-fire neuron to predict most-likely membrane
potential trajectories on the approach to the firing threshold
[2]; they have developed this approach to analyze the behav-
ior of voltage-gated subthreshold ion currents in the vicinity
of a spike, and compared with numerical simulations of a
nonlinear neuron [3]. Ingber [4] has formulated interactions
between neurons in terms of path integral approaches, with
application to short-term memory.

Such techniques should have wide applicability. For ex-
ample, Pospischil et al. [5] have studied the changes in ex-
citatory and inhibitory synaptic conductance on the approach
to an action potential event experimentally and numerically,
and Rudolph et al. [6] have studied changes in membrane
potential and conductance. They have shown that a drop in
the inhibitory conductance, due to random fluctuations, is
what drives the formation of an action potential. Rudolph et
al. have also shown similar changes in membrane conduc-
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tances on the transition between “down” and “up” states of
slow-wave sleep [6]. The time course of such conductance
changes, being a “most-likely” situation, should be suited for
study with a path-integral technique.

Additionally, the behavior of fluctuations in membrane
potential on the approach to an action potential have been
analyzed by Steyn-Ross e al. [7] using a two-component
neuron model due to Wilson [8]. In particular, Steyn-Ross er
al. showed that an action potential can be considered as a
growth of a small fluctuation into a macroscopic event. This
“most likely” trajectory of a neuron’s membrane potential on
the approach to an action potential should also be tractable
through a path integral approach.

In this paper, we focus on the Hamiltonian formalism of a
dynamical system. Hamilton’s equations are related to the
Lagrangian (path integral) approach, and often considered
alongside the Lagrangian method, but the physics of a sys-
tem is expressed in a different way, as a set of coupled first-
order differential equations in phase space. Since the two
approaches are both formally exact, the Hamiltonian method
cannot, in principle, provide any new solution that is not
obtainable through the Lagragian method, and we emphasize
here that we do not consider it to be generally advantageous
over other approaches. However, Hamilton’s equations can
often provide a physical framework by which to understand
the behavior of systems [9]. The Hamiltonian approach con-
structs “canonical momenta” conjugate to each state vari-
able, and in practice these momenta often represent physical
quantities. We find this is true for a single neuron system. For
example, Ingber has used canonical momenta for a many-
neuron system as a way of describing an electroencephalo-
gram [10].

In this paper, we use Hamilton’s equations to provide a
physical explanation of the results of Pospischil et al. [5] and
Rudolph er al. [6], specifically that the bias in the random
driving of the neuron system on the approach to an action
potential changes in an exponential manner. However, the
Hamiltonian description of this system has limitations, and
we do not suggest that it will be more useful than path inte-
gral methods for predicting most-likely time courses of neu-
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rons (e.g., that of Paninski which predicts well the subthresh-
old membrane potential between spike events [1]).

We first present a generalized Lagrangian description of a
stochastic system, and write this in Hamiltonian form. We
then place the two-component neuron model of Wilson [8]
into this form and discuss its numerical implementation. We
then “solve” the Hamiltonian description by simulation, with
particular emphasis on the approach to an action potential,
and compare the results with direct simulations of the neuron
model. We comment specifically on the physical meaning of
the conjugate momenta.

II. THEORY
A. Lagrangian

Consider the stochastic process given by the equation
ax - . o .
o = S0 + o), 2.1

where x is a multidimensional state vector of the system, f is
an operator, and v represents the random input to the system
and ¢ is time. Here the random input vector v has the same
dimensions as dx/dt. We start by considering a discrete form,
most suitable for modeling, but take the limit of small time
steps to derive a Lagrangian for the system. In terms of dis-
crete time steps of size A¢, we can write this as the process

Ax = f(x,0)At + oy &(t) VAL, (2.2)
where oy is a matrix and the noise terms & are dimensionless
uncorrelated Gaussian noise with mean zero and variance
unity:

(&(NE(t')) = 6,6, (2.3)
Here ¢ is the Kronecker delta and the average is taken over

all time steps. In this interpretation of the stochastic process
we use the dimensioned matrix oy to scale the dimensionless

noise terms &(7); its ith row carries dimensions of [x;] per
square-root time. We can map back to continuous time by
taking the limit A7— 0 whereupon Egs. (2.1) and (2.2) imply
that the statistics of v follow:

(W) (¢")y = Toyoy 8t —1'), (2.4)
where [ is the identity matrix and 6 now signifies the Dirac
delta function. The superscript T denotes the transpose, and
the average is taken over continuous time. In terms of dimen-
sions, we recall that v; carries dimensions of [x;] per time, the
i-th row of oy, dimensions [x;] per square-root time, and the
Dirac 6 function dimensions of inverse time, making Eq.
(2.4) dimensionally consistent; specifically the ij component
carries dimensions of [x;][x;] per unit time squared.

We can construct a Lagrangian for this system following
Paninski [1]. The probability of a given series of random

numbers &(r) (where ¢ denotes a discrete time index) is given
by
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p 1l eXp[— —éT(t)S(t)} = eXp[ - gT(z)g(t)]

(2.5)

We identify the (dimensionless) action S as the negative of

the exponent. Substituting for 5 from Eq. (2.2) we obtain the
action S as

25(»5@——2 [AZ() - f() A 0 oy [AR(r)

- f(t)At].

Writing 32 as the symmetric matrix 000'5, we can take the
limit A— 0 to obtain

(2.6)

= % f di(i - TS5 - f), (2.7)

where x=limy, .o(AX/Af). Since S=[,diL(<,x,1), we recog-
nize the Lagrangian must be given by
1 = e KX et
L= E(x—f)TE‘z(x—f)- (2.8)

This assumes that 3?2 is an invertible matrix [in essence that
noise enters in all components of Eq. (2.1)].

B. Euler-Lagrange equation

We can proceed from the Lagrangian of Eq. (2.8) to con-
struct the Euler-Lagrange equation for the system. This de-
notes the most likely path for the system. We follow Paninski
[1], but generalize to N dimensions. Using x; to denote the
kth dimension of x, the N Euler-Lagrange equations are

d ( ﬁL) aL

dt (9xk r?xk
Substituting the Lagrangian L from Eq. (2.8) into these equa-
tions, and using dx;/ dx,= O;, we obtain the N equations

—f)3=- a—fk 7= 1)

(2.9)

Eka(-x f]) + (

- (- f)27E (2.10)

lj (9
where summation is assumed over repeated indices, and a
dot represents a full differentiation with respect to time.

To proceed we note that, by the chain rule

P

2.11
ot z?xk &xk e ( )

Assuming further that the Lagrangian is an explicit function

of neither x nor ¢ (as is often the case for neuron models)—

i.e., f = f(f), only the second term on the right-hand side of
Eq. (2.11) remains, and we have
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J
i, (2.12)
(?xk

fi=-1
from which Eq. (2.10) becomes

af; i Nz
2;?()(] - EJ;LX[> + (x, - éx,)Eikz

Of
- D5 £) - G O

T (2.13)

C. Small fluctuations
The set of equations (2.13) will be in general difficult to
solve. However, if we consider the case of small fluctuations

about an equilibrium state we can linearize the function f by
writing x with reference to its long-term average, to give us

f(X)=Mx, where M is a matrix, and we have repositioned our

origin to be at the equilibrium point (i.e., %=0 denotes the
equilibrium point). In this form, the Euler-Lagrange equa-
tions reduce to
D/
2 kj (x i M

jlxl) + (% -

2.
Mikzij (xj_

Mx)3
Mx) = (%, - M ilxl)zi_sz s
(2.14)

In matrix form, this gives

S =3Mx+ ()X - ) My

=—MTS72X+ MTS72Mi - MT (372X + MT(S72)TMX,
(2.15)
which can be rearranged as
YX+(=YM+M'Y)x-(MTYM)x=0, (2.16)

where Y=372+(3"2)7 (=232, since 3? is symmetnc)
Furthermore, if we assume solutlons of the form x

=c exp()\(k)t) where k denotes the kth solution, we have x

=\®x and x=AW2x, giving the secular equations

(= MT-APDY(M - \Pp k=0 (2.17)

where [ is the identity matrix.

The matrix of Eq. (2.17) is related to the power spectrum
of a system of the form of Eq. (2.1). As described by Wilson
et al. [11], the power spectrum S(w) of such a system, fol-
lowing the method of Chaturvedi er al. [12], is

S(w) = (M + i) 'Y Y (M - io])™, (2.18)

which we recognize as the inverse of the matrix of Eq.
(2.17), where A — —iw. Note, however, the different interpre-
tations of the matrix; in Eq. (2.17) it is part of a secular
equation, and has specific (complex) solutions for \®),
whereas in Eq. (2.18) the expression applies for any real w,
and gives resonances where —iw approaches A%, For ex-
ample, consider the case when the real part of an eigenvalue
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A® is zero. Any eigenvalue would give a zero determinant
for the matrix of Eq. (2.17) and therefore poles in the matrix
S(w) at angular frequencies * w given by the imaginary part
of . When the real part of the eigenvalue is zero, these
poles correspond to undamped resonances of the system at
this angular frequency.

D. Solution to the Euler-Lagrange equation
Equation (2.17) must be solved to provide the solutions
to the Euler-Lagrange equations. Note that this is an

N-dimensional matrix equation, of the form R()\(k))c7‘:6
where

R=(=M"=\®nym -\PJ). (2.19)

By inspection, one solution of the equation can be found by
solving

(M -\Ppck=0 (2.20)

from which we recognize that c¢* is an eigenvector of the
matrix M with eigenvalue A¥. (In general, the eigenvalues
can be complex.) We expect N such solutions from an
N-dimensional matrix.

Further 1nspect10n of Eq. (2.19) reveals a second set of

solution vectors Ck exists where Y(M— )\(k)I)Ck s an elgen—

vector of M7 with eigenvector —\®). In general, if u* are
eigenvectors of a matrix A with eigenvalues uf, then the

eigenvectors of the matrix A” are given by v¥ with the same
eigenvalues u¥, where v¥ is the kth “reciprocal-lattice” vector
of the set {u7‘}: that is, v* is perpendicular in N-dimensional
space to all uj, where j # k. This means that our second set of

solutions C* is related to the “reciprocal-lattice” vectors of
the first set by

d=y(M +\P1)Ck, (2.21)

where the set of N vectors {d*} are the reciprocal-lattice vec-

tors of the set {c*}, and A ¥ are their associated eigenvalues.
In this equation the A\¥) carry a positive sign so they are the

same ¥ as for the set of vectors {c}; however, it is the
negative of these that satisfies the secular equation for the
second set of modes. Equation (2.21) can be solved to give
the solutions

Ck= (M + N1y gk, (2.22)

The solution of the Euler-Lagrange equations (2.14) is
then a linear combination of all the eigensolutions

N N

3= > aicfexp NV + > b(M + NP1y gk exp(- \Vp),
k=1 k=1

(2.23)

where {a,} and {b;} are constants describing the amounts of
the various modes, and {d*} are the reciprocal lattice vectors
of the set {c*}. If the system has a stable equilibrium, the real

061908-3



M. T. WILSON AND D. A. STEYN-ROSS

part of all the \¥) will be negative. Therefore the first term of
Eq. (2.23) represents decaying modes, whereas the second
term represents growing modes. This is a generalization of
the work of Paninski [1] to N dimensions.

In general, a Lagrangian problem will be defined by spe-
cific starting and ending boundary conditions in time. That
is, the full N components of the vector x are defined at the
start and finish, resulting in 2N equations. The 2N parameters
{a;} and {b;} can then be fitted to these conditions, to give
the single solution to the problem. The trajectory defined by
the solution will be the one most likely to occur. However, in
practice (e.g., for real neurons), we are unlikely to know the
full range of boundary conditions.

E. Hamilton’s equations

Before introducing a neuron model, we present the
equivalent representation of the problem in the form of
Hamilton’s equations [9]. The Hamilton formulation uses
first order differential equations in time to describe move-
ment of a system through phase space. Formally, we define a
conjugate momentum for each coordinate variable of the La-
grangian, thus doubling the dimensionality of the system but
reducing it to first order in time. Unlike the Lagrangian case,
which uses starting and ending conditions, the boundary con-
ditions for the Hamiltonian approach are usually presented
purely as initial conditions.

For a system with a Lagrangian given by L=L(g,q,1), as
in Eq. (2.8) (as is conventional we now use ¢ rather than x
when using the Hamiltonian approach), we use the N com-
ponents of ¢ as generalized coordinates, and for each com-
ponent g; we define its conjugate momentum as

AL(G,q.t
= M. (2.24)
9q;
We then construct the Hamiltonian H as
H(p.g.0=4"p-L(g.4.0), (2.25)

where we have written the N conjugate momenta variables as
a vector p. Hamilton’s equations are then given by

H o oH L _H

= = : 2.26
For our specific case, we start with Eq. (2.8):
1 2.
L= E(Qk_fk)zkj ;=1 (2.27)

where we have used g=x (for the sake of convention) and
used component form with the summation convention for

repeated indices. If we assume that f= f(zf) (i.e., is not an

explicit function of g or ¢) we obtain our conjugate momenta
as
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L 1 1
P E(Qk—fk)ﬁlf + 52;»2(5],‘ —f)=270G- 1)
(2.28)

where the last part follows since 3? is symmetric. Our
Hamiltonian is given from Egs. (2.25) and (2.27) as

. 1 Ty
H=4p;= (= f)35 ;= 1)) (2.29)
To proceed, we must write H in terms of p,g (and in

general 7). We therefore solve for ¢, from Eq. (2.28) and
substitute into Eq. (2.29). From Eq. (2.28), we find

C?k:fk"'ziﬂ’/ (2.30)
and so substituting into Eq. (2.29) gives
- | S

H(p.q) = fipi+ SpiZipi- (2.31)

2

The Hamiltonian is now written purely as a function of the
components of ¢ and p. (A ¢ variable is not required since the
Lagrangian is not an explicit function of time.) From here,
we can identify pseudoenergy terms. The second term on the
right-hand side of Eq. (2.31), which varies as conjugate mo-
mentum squared, we identify as a pseudokinetic energy. This
leaves the first term as a pseudopotential energy. In this case,
since there is no explicit time dependence of the Hamil-
tonian, we would expect the pseudoenergy to be a conserved
quantity. It is important to note, however, that H is not a true
“energy”’—similar to L it carries dimensions of inverse time.

The equations of motion for the system are found from
Eq. (2.26). Substituting for H from Eq. (2.31), we obtain the
two equation sets

oH

Gi=—=fi+3ip. (2.32)
p;
which is the same as Eq. (2.30), and
oH  Jf,
)= — = g 2.33
D= 0= g P (2.33)

Note that there are 2N equations in total. The Euler-Lagrange
equations (2.10) can be obtained by differentiating Eq. (2.32)
with respect to time, substituting for p; from Eq. (2.33), and
resubstituting for p, from Eq. (2.32). Hamilton’s equations
(2.32) and (2.33) are equivalent to the Euler-Lagrange equa-
tions (2.10), and are a general result. This form is not, how-
ever, necessarily more useful than the Lagrangian approach,
but, as explained in Sec. II F below, it leads naturally to a
physical interpretation of the changes in the system on the
approach to an action potential.

F. Interpretation

We find that the conjugate momentum p has a physical
interpretation. Comparing Eq. (2.32) with the original equa-
tion of motion (2.1), we see that (in matrix form)
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=1 (2.34)
i.e., the conjugate momentum p is simply >~2v. This is non-
intuitive since v represents the noise process, yet the Hamil-
ton equation for the time derivative of p is well defined.
These facts are reconciled when we recall that the Lagrang-
ian and Hamiltonian approaches represent the most likely
path of the system; so the relationship between p and v can
be viewed as a statement of what the most-likely noise input
vis for given starting and ending conditions. We will look at
this result in more detail as part of the numerical simulations
described below.

In the case of small fluctuations about the equilibrium
point (which by construction is at ¢=0), we can define
f(cj):Mé, or, in components, fi=My;q;, and so Eq. (2.33)
becomes

pi=—Mupy=—Mp,. (2.35)

Recall that, for a stable equilibrium, M is a negative definite
matrix, so the real parts of its eigenvalues are negative.
Clearly if p is initially an eigenvector of M7, it will remain as
an eigenvector and so grow exponentially in time according
to the corresponding eigenvalue. Therefore, we can consider
the growing conjugate momentum as giving rise to the grow-

ing modes of Eq. (2.23). For small fluctuations f(q)=Mg
where M is a constant matrix, and so the time constant for
the growth in p depends upon the eigenvalues of M, rather
than the size of the noise 2 —i.e., it depends on the closeness
to the critical driving current. However, for larger deviations
this no longer applies and the extent of the noise 2, which
influences ¢ through Eq. (2.32), will now influence p through
Eq. (2.33). Very close to firing we expect the noise terms to
be more dominant; for example, Badel ez al. found that close
to the threshold of a two-component integrate and fire neuron
the averaged trajectory of the membrane potential depends
on the noise term in addition to the neural time constants [3].

II1. SINGLE NEURON MODEL
A. Model formulation

To illustrate the Hamiltonian approach, we wish to select
a model of a neuron that is both mathematically simple and
physiologically reasonable. For this reason we choose the
model due to Wilson [8]. This model was designed to en-
compass the physiological accuracy of a Hodgkin-Huxley
neuron [13] (in an approximate two-component form in the
manner of Rinzel [14]) while retaining the mathematical
simplicity provided by the simple spiking equations of
FitzHugh [15] and Nagumo [16]. The equations are capable
of describing both integrator and resonator type neurons,
with simple changes to the form of the equations. In this
work, we focus on an integrator neuron, such as a cortical
neuron.

Wilson uses just two coupled differential equations in
time, the first to describe the membrane potential, the second
to describe a generalized recovery process. To these equa-
tions we add zero-mean white-noise inputs, in the manner of
Steyn-Ross et al. [7]. The equations of the model are written
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TABLE 1. The parameters and constants for the model of Wil-
son, for the cortical neuron. The reader should, however, note the
following. (i) The equation for G(R) quoted by Wilson in Ref. [8] is
incorrect; the quadratic component has been written as 0.33 dV—2
but should read 3.3 dV~2. This mistake is acknowledged by Wilson
in Ref. [19]. (ii) In Ref. [7] the full precision defined for y by
Wilson, namely, y=1.26652, has been used; however, it has been
quoted in Table I of that reference as y=1.267. (iii) In this paper we
have used the reduced precision form of 7, i.e., 1.267. This means
that our critical current and associated time scales do not quite
agree with those of Ref. [7].

Symbol Value Unit

C 1.0 uF cm™

TR 5.6 ms

Ena 48 mV

Ex -95 mV

8K 26 mS cm ™2

a 33.8x 107 mS cm™2 mV~2
b 47.58 X 1072 mS cm™? mV-~!
c 17.81 mS cm™2

a 3.30%x 1074 mV~2

B 3.798 X 1072 mV~!

y 1.267 dimensionless
o parameter #A cm™ ms!?
o, parameter ms!/?

av
CZ =—gnaV(V = Eny) — gkR(V = Ex) + Iy + 01, (1),

(3.1)

dR
TRE =—R+ G(V) + 0'252(1‘), (32)

where V is the membrane potential, and R is a dimensionless
“recovery” variable. The parameters for the model are the
membrane capacitance per unit area C; the sodium and po-
tassium reversal potentials Ey, and Ey, respectively; the po-
tassium channel conductance per unit area gy; the direct
component of the driving current /;.; scaling of the noise o,
and o,; and a time-constant for the recovery process 7. The
terms & and &, are uncorrelated white-noise inputs, with
properties

(@) =0, (&(ng')=d;0t-1").

Note that in this continuous form, the noise terms, unlike
those of the discrete time equation (2.2), are dimensioned;
they carry dimensions of inverse square-root time. For a cor-
tical neuron, the functions gn,(V) and G(V) are given by
second-order polynomials gn,(V)=aV?+bV+c and G(V)
=aV?+BV+1y. The values of the parameters and constants
are given in Table L.

For this paper, the driving current /3. and the noise
strengths o and o, will be varied. Equation (3.1) is written
in terms of currents, and Eq. (3.2) in similar form; to trans-

(3.3)
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form these to the form of Eq. (2.1), we divide Eq. (3.1) by C
and Eq. (3.2) by 7.

For 1[4, above the threshold of approximately
21.809 uA cm™2 the neuron enters a limit cycle, firing spikes
at regular intervals, the spike-rate increasing smoothly as /.
is raised. For a driving current below threshold, there is a
stable node solution to the equations, and we expect small
fluctuations in V and R around their equilibrium values.
However, the noise may be large enough for spikes to be
produced. In Ref. [7], Steyn-Ross et al. analyzed the dynam-
ics of the model as ;. was increased towards threshold. The
closer the driving current is to threshold, the more frequently
spikes will be produced for a given noise level; and an in-
crease in noise will increase the spike rate.

We now rewrite the model equations (3.1) and (3.2) in
terms of the Hamiltonian formalism. First, we define our
state vector ¢ as a two-component vector consisting of the
membrane potential V and recovery variable R; i.e., ¢;=V,

@>=R. The components of the function f then follow directly
from Egs. (3.1) and (3.2):

1
fi= E[— gna(q1)(q1 — Exa) — 8x92(q1 — Ex) + 4],

(3.4)

1
fr=—l-q2+Glg)]; (3.5)
7R
and the noise terms are simply 2;,=0/C, 2y,=0,/ 7, and
31,=2,;=0. Hamilton’s equations (2.32) and (2.33) give us
four coupled first-order differential equations

. 0 : 1 2
q,= E P1+E[— (aqy +bq, +c)(q, — Exy)
- gx4q2(q1 = Ex) + Iy, (3.6)
. o,y \2 1
4r= (—2> pr+ —(—q+aqi+Bg+y),  (3.7)
TR TR

~1
pr="l- 3aq; + (2aEy, - 2b)q, - gxqs + (PEx, — ©)Ip;

1
—T_(zaCII + B)pa. (3.8)

R

1 1
D2 = E[gK(Ch - EQ)lp; + —ps. (3.9)
T

R

Note that p; has dimensions of inverse voltage, and ¢,
=R and p, are both dimensionless. Equations (3.8) and (3.9)
can be written in matrix form as

p=AQ)p. (3.10)

Close to equilibrium, the matrix A is constant (independent
of g), and equal to minus the MT of Eq. (2.35), but away
from equilibrium this is no longer true. In particular, on the
approach to an action potential, the nonlinear part of the
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dynamics begins to dominate the restoring dynamics repre-
sented by the linear region [7].

From the Hamiltonian of Eq. (2.31), we identify the
pseudopotential energy Hy as

|
Hy=f-p= E[— ana(q1)(q1 = Exg) — 8x92(q1 — Ex) + IgcIp,
1
+—[-q,+Glgq)]p, (3.11)
TR
and the pseudokinetic energy as
| o= PiOT P30
Hr=—p'S%p="7F+—"5". 3.12
=5 P 202 271% ( )

The matrix 32 is now recognizable as an inverse inertia. For
example, in the limit of X — 0 (i.e., vanishingly small noise)
the system would not depart from its equilibrium position,
consistent with it having a massive inertia.

B. Implementation

The equations (3.6)—(3.9) have been coded with the Mat-
lab programming language. For a set of initial conditions
(where ¢, g5, p1, and p, are defined at r=0) the variables can
be iterated forward in time. For most values of the input
parameters Iy, o, and o,, the model eventually “fires” an
action potential; g; (=V) rises very steeply while ¢, (=R)
drops. The numerics then break down as p; and p, rapidly
get very large.

What does the trajectory tell us? Since Hamilton’s equa-
tions are equivalent to the Lagrangian approach, the trajec-
tory will be the most likely path taken for the neuron be-
tween its starting point and any given point on the trajectory.
We can therefore use this method to define the most likely
trajectory of the variables V and R on the approach to an
action potential.

Simple iteration of equations (3.6)—(3.9) forward in time
is, however, not practical. The reason for this is the rapidly
increasing values of p; and p,. For a system close to equi-
librium, Eq. (2.35) applies, and we see that the conjugate
momenta will grow rapidly. Moreover, the most rapid growth
will be due to the eigenvalue of the matrix M that is most
negative. In Ref. [7], Steyn-Ross et al. have analyzed the
eigenvalues of the Wilson model, showing that, for a system
close to threshold, there is one “slow” and one “fast” eigen-
mode. The fast eigenmode has a large, negative eigenvalue
and therefore dominates the behavior of the conjugate mo-
menta in the limit Hamiltonian approach. In practice, this
means that iterating the Hamiltonian equations forwards in
time leads to an almost immediate firing of a “spike,” during
which the numerics breaks down.

To avoid this problem, we remove the fast eigenvalue, by
projecting the vector p onto its slow eigenvalue, at every
time step. Mathematically, we find the normalized eigenvec-
tors of the matrix A(g) of Eq. (3.10), given by p, and p,,
where the subscripts s and f denote slow and fast, respec-
tively. We then write p in terms of the normalized fast and
slow eigenvalues:
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FIG. 1. A plot of the full “fast” solution to Hamilton’s equations for the Wilson neuron for the case of I,,=21.475 uA cm™, o
=0.02 nA cm™2 ms'?, and 0,=0.02 ms'’2. Parts (a)~(d) show the variables ¢;=V, g,=R, p;, and p,, respectively, as functions of time. Part
(e) shows the growth in —p, at small times on a log scale; part (f) shows the growth closer to the firing event. Note how the two time scales

are very different, corresponding to the slow (e) and fast (f) scales.

p=kips+kopy, (3.13)

where k; and k, are scalars, and simply remove the fast term,
ie.,

p— kip. (3.14)

This approximation would be precise if we are always close
to equilibrium, i.e., the matrix A(g)=M" does not change
with time, and so its eigenvectors are constant. Then a vector
p that is parallel with p, would be expected to remain paral-
lel, for all times.

We therefore verify the Hamiltonian approach in Sec. IV
below with the following method. We choose to start the
system at equilibrium (i.e., ¢;=V and ¢,=R are chosen to be
their equilibrium values, so that, in the absence of noise
(oy,0,—0), both ¢, and ¢, would be zero). We also select
initial values of the conjugate momenta p; and p,. We then
iterate the equations (3.6)—(3.9) forward in time with a
second-order Runge-Kutta method, using a time step of
5 us, projecting out the fast eigenvalue at every time step
with the method of Eq. (3.14). This results in a “spike” being
generated. Typically, the numerics breaks down after the
spike. At the time at which the spike forms (which we sig-

nify by when V crosses an arbitrary threshold, e.g., =55 mV),
we record the values of ¢; and ¢,, which we denote by V,
and Ry, respectively, and time taken, 7. We then have an
“end value” situation: the path indicates the “most-likely”
trajectory for the system to travel from its equilibrium posi-
tion to the position V; and Ry in exactly a time T (subject to
the validity of the slow approximation described above).
Finally, we can simulate the equations of Wilson, Eqs.
(3.1) and (3.2) directly. (Note these equations include noise
input.) We do this with a second-order predictor-corrector
method [17]. We have used the same time step of 5 us. We
start the system at equilibrium and run for a time 7. After this
time, we look at the values of V and R, and “accept” the run
if they are sufficiently close to V; and R;. This means that
the simulation has produced a path with the correct starting
and finishing points. We then run the simulation again, until
we have collected of order hundred or more acceptable se-
quences. We then average these sequences over time to pro-
duce an “average” neuron trajectory, and compare it to the
Hamiltonian simulation. However, success rates for accept-
able neuron simulations are often very low (less than 1%).
Note that when we do not project onto the slow eigenvec-
tor, as in Eq. (3.14), we find that not only does the neuron
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FIG. 2. A plot of the pseudokinetic (dash) and pseudopotential
(dot-dash) energies as a function of time, for the simulation of Fig.
1. The sum of the two (solid line) is conserved.

fire very quickly, but the end points V; and R are such that
there is an extremely low success rate in terms of
simulations—i.e., only a tiny number of simulated runs end
with V and R values close to the target V; and Ry. This
makes a comparison of the full Hamiltonian method with the
simulations impractical. In theory, one would expect there to
exist initial values of p; and p, such that any start and finish
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points could be reproduced; however, we have no way of
knowing what those starting points might be.

IV. RESULTS AND DISCUSSION
A. Full Hamiltonian simulations

First, we present results for the full Hamiltonian method,
with no projection onto the slow eigenvalue. Figure 1 corre-
sponds to the case of I,,=21.475 uA cm™ (i.e., close to
threshold), and ¢;=0.02 uA cm™2 ms'?, ¢,=0.02 ms"%. In
the four plots (a)—(d) we show the variation of the variables
q1> 92, P1, and p,, respectively, as functions of time, up to the
onset of the firing event (spike). The initial values of p; and
p, were chosen to lie along a slow eigenvalue. The onset of
the spike is extremely rapid, but is signalled by the rapid
growth in the magnitude of p, and p,. In parts (e) and (f) we
focus on the exponential growth behavior of p, by plotting it
on a log scale. (The negative of p, is taken to ensure the
logarithm is real.) The two separate time-scales are clearly
seen; part (¢) shows the case for small times where p, grows
according to the slow-time scale (since the initial conditions
were set as the slow eigenvector), whereas part (f) shows
later times where the fast eigenvalue becomes important.

Since the Hamiltonian is not an explicit function of time,
it should be a conserved quantity. This is demonstrated by a
plot of the pseudoenergy terms in Fig. 2. The kinetic part
increases on the approach to the spike; the potential part,
which starts near zero, decreases, becoming negative. Over-
all, the sum of the two is constant.

0.23

0.225 |~
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0.205

0.2
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0.195

0.19

0.185} g

0.18 ‘ ‘ ‘
~40 -30 20 ~10 0
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FIG. 3. A comparison of the simulated Wilson neuron and the Hamiltonian approach, for the case of I4.=21.475 uAcm™, o
=0.02 A cm2ms'2, and 0,=0.02 ms!2. The Hamiltonian solution using the “slow” approximation is shown by the thick line; the mean
result of the 119 acceptable simulations out of 10 000 trials is shown by the thinner line. The spread in the simulated trajectories is indicated
by the dotted lines which are placed one standard deviation above and below the mean trajectory. Part (a) shows the solution for the
membrane potential V; part (b) shows the solution for the recovery variable R. The sequencies have been aligned so that they cross =55 mV
at t=0 ms, therefore the time sequences are not all exactly 43.2 ms long.
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B. Spiking events

We continue by presenting a comparison between trajec-
tories produced by the Hamiltonian approach of Egs.
(3.6)—(3.9) and direct simulation of the Wilson model,
(3.1) and (3.2). In Fig. 3 we show the case for the con-
ditions of Fig. 1, namely, I4=21.475 uAcm™2, o
=0.02 #A cm™> ms'"?, and ¢,=0.02 ms"’?. The initial values
of p; and p, were chosen to be parallel to the slow eigen-
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vector’ and their magnitude chosen to produce a spike after a
reasonable interval of time, in this case about 40 ms. The end
point of the Hamiltonian simulation was considered to be
T=43.2 ms where g,=V crossed —55 mV; at this point g,
=R reached 0.19. At the end point, the membrane potential
was rising very rapidly, whereas the recovery variable was
fairly constant. For this reason, tolerances were chosen on
the end points as follows: for V;, —60 mV to +20 mV; for
Ry, 0.18 to 0.21. Simulations of the Wilson model were then
performed over this time period, and accepted if the end
points for V and R were within these tolerances (and no
previous spike was evident in the time period). Note that
both V and R needed to be within these bounds for the run to
be accepted as having the correct finishing point.

Out of a total of 21 000 simulations, only 119 trajectories
reproduced the correct V; and Ry end values after 43.2 ms.
In Fig. 3 we display the simulated trajectories in the form of
the mean trajectory for both V and R, and the standard de-
viation in the trajectory. When plotting these, we align the
trajectories precisely in time so they cross the chosen thresh-
old (=55 mV) at the same point in time. We also show the
Hamiltonian solution (using the slow approximation). We
observe that the Hamiltonian approach is a reasonable ap-
proximation to the simulations, but it is about one standard
deviation high in V for a significant part of the trajectory, and
one standard deviation low in R.

The behavior of the pseudoenergy terms for the Hamil-
tonian solution is shown in Fig. 4. In this case the Hamil-
tonian is conserved for small times, but the total pseudoen-
ergy falls as the spike is approached. This loss in energy may
be attributable to the effects of the slow approximation. In-
terestingly, in this case the kinetic and potential pseudoener-

0.3

recovery variable
o o o
N N N
N N [e)]

o
N

-20 -15 -10 -5 0

time before spike (ms)

FIG. 5. A comparison of the simulated Wilson neuron and the slow Hamiltonian approach, for the case of I;,=15.0 uA cm™2, o

=0.1 A cm™? ms!?

, and 0,=0.1 ms'2. There were 80 sequences accepted from 36 000 trials. The Hamiltonian solution is shown by the

thick line; the mean result of the simulations by the thinner line. The spread in the simulated trajectories is indicated by the dotted lines
which are placed one standard deviation above and below the mean trajectory. Part (a) shows the solution for the membrane potential V; part

(b) shows the solution for the recovery variable R.
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FIG. 6. A comparison of the simulated Wilson neuron and the
slow Hamiltonian approach, for the case of I;,=21.475 uA cm™2,
01=0.02 uA cm™? ms!?, and 0,=0.02 ms'"/2. The Hamiltonian so-
lution is shown by the thick gray line; the mean result of the 75
accepted simulations out of 10 000 attempts is shown by the thinner
solid line. The spread in the simulated trajectories is indicated by
the dashed lines which are placed one standard deviation above and
below the mean trajectory. Also shown by the dot-dash lines are the
standard uncertainty in the mean (i.e., the standard deviation di-
vided by \75—1, where 75 is the number of accepted simulations);
these lines are one standard uncertainty above and below the mean,
respectively. Part (a) shows the solution for the membrane potential
V; part (b) shows the solution for the recovery variable R.

gies reach turning points about 30 ms before the firing event.
We have not investigated this phenomenon further.

We also show a similar comparison for a lower driving
current /;,=15.0 A cm™ in Fig. 5. In order to produce
spiking events, we have needed to increase the noise level, in
this case by a factor of 5. The membrane potential V reached
—55 mV after 21.3 ms. The thresholds for V; and Ry after
21.3 ms were chosen as for V5, =50 mV to +20 mV; for Ry,
0.18 to 0.22. In this case there were only 80 acceptable simu-
lated sequences from a total of 36 000 simulations. Results
are broadly similar to those of Fig. 3 but less good; the
membrane potential in the Hamiltonian approach is some-
what high, whereas the recovery variable is somewhat low.
In this case of a system well-below threshold we believe that
the slow approximation is less valid—in the simulations the
onset of the spike is fairly rapid, due to the high noise re-
quired to cause a firing event, and we would expect the fast
eigenvalue of the Hamiltonian system to play some part in
this. Conversely, close to threshold and in the limit of small
noise the dynamics of the system is dominated by the slow
time scale [7] and the slow approximation is more reason-
able.

C. Validity of the slow approximation

In the above plots, we have focused on the case of a spike
event, but this need not be the case. During an action poten-
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tial, we would certainly expect the slow-approximation to
break down, because the matrix A(g) of Eq. (3.10) is not
constant, meaning that a vector p that initially lies along an
eigenvector of A does not at future times. However, if we
only consider situations close to equilibrium, A is approxi-
mately constant, equal to —M7 of Eq. (2.35), and therefore a
vector p that initially lies along the slow eigenvector is ex-
pected to do so for all times. In Fig. 6 we show a comparison
of the Hamiltonian and simulation approaches for the case of
a small deviation from equilibrium. Again, we have chosen
the close-to-threshold situation of I;,=21.475 uA cm™, o,
=0.02 A cm™? ms'?, and 0,=0.02 ms"2. In this case the
end point of the Hamiltonian approach is chosen to be well
before a spike forms. The acceptable range of simulation end
points after a time 7 of 20.0 ms were strongly confined: for
Vi, —67.80 mV to —67.29 mV; for Ry, 0.2053 to 0.2084.
This led to a low acceptance rate; just 75 simulated se-
quences were accepted out of a total of 10 000 attempts.
Figure 6 shows that the Hamiltonian approach now performs
much better, and tracks the mean membrane potential and
recovery variable of the simulations well.

D. Significance of the noise on spike formation

Equation (2.34) indicates that the conjugate momentum
vector p is directly related to the most likely noise input to
the stochastic system. Given the exponential growth of p, we
infer that, on the approach to a spike, a simulated neuron
would show an exponential change in its noise inputs. This is
a surprising prediction—one would expect on average the
noise inputs to be zero, but the implication is that it is the
change in noise input that causes the spike event. Indeed,
experimentally Rudolph er al. have shown that a spike is
generated by a drop in inhibition that becomes more severe
as the firing event is approached [6]. Also, Pospischil er al.
[5] have already shown this shift in conductance with a nu-
merical model, in their case a three-component model of
Destexhe et al. [18] with conduction noise, and in their the-
oretical and numerical analyses Badel et al. suggest inhibi-
tory fluctuations are at least as important as those of excita-
tion [3]. The Hamiltonian approach presents a clear
explanation on a physical basis of why this should be—
specifically it is the increasing negative bias in the recovery
conjugate momentum (i.e., noise) that triggers an action po-
tential.

To demonstrate this nonintuitive exponential change in
noise input predicted from the growth of p (see Fig. 1),
we analyze the random number sequences for simulations of
the Wilson model that occur in the build-up to a spike.
In Fig. 7 we plot the mean noise against time for the two
noise inputs to the simulations of Egs. (3.1) and (3.2),
for I,.=21.4 uAcm™2, 0,=0.03 uAcm>?ms'?, and o,
=0.03 ms!2. We do this by undertaking many simulations
(500 for the case of the figure), selecting those that produce
action potentials within a given time frame (in this case
15-60 ms), aligning them in time at the instant that the
membrane potential crosses a certain threshold, analyzing
the random number sequences in the period of time leading
up to the spike. We average these random numbers over short
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FIG. 7. A plot of the mean noise input to the Wilson model over the 15 ms preceding a spike, for the case of I,,=21.4 uA cm™2, o
=0.03 nA cm™2ms"?, and ¢,=0.03 ms'?. A total of 190 simulations were accepted from 500 trials. (a) The mean noise input o £, (solid
line) to the membrane potential equation (3.1) averaged over 1 ms bins before the spike. The dot-dash lines indicate the standard uncertainty
in the mean. (b) The mean noise input 0,&, to the recovery variable equation (3.2) (solid line) and its standard uncertainty (dot-dash lines).
(c) The same data as (b), plotted on a logarithmic scale. The growth is well fitted by an exponential (straight line).
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the spike. (c) The same data as (b), plotted on a logarithmic scale. An exponential fit (straight line) has been applied.
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time intervals (1 ms). Parts (a) and (b) show the results for
the random inputs to V and R, respectively. Part (c) is a plot
of the negative of the input to the R equation on a logarith-
mic scale, to show the exponential nature of the growth.

The graphs show that, in this case, there is a clear reduc-
tion in mean noise input to the recovery variable in Eq. (3.2)
on the approach to the spike; in other words, we can say that
it is the reduction in the mean of these random numbers (that
is, the fact that they are on average slightly negative) that has
caused R to drop sufficiently for the spike to occur. Note that
close to the firing event, the random numbers need to get
more negative—this is because with a reduced R there is a
stronger drive towards equilibrium that must be overcome
until the point where the nonlinear dynamics takes over.
There is no obvious trend in the input to V, suggesting that
the increase in membrane potential on the approach to a
spike is best attributed to a reduction in recovery variable
(i.e., reduction in inhibition). Once the neuron has fired, the
random input returns to its long term average (zero, not
shown on the graph). It is important to realize that the mean
random input over any time frame will be zero, so long as
the time-frame has not been selected in a biased manner. The
fact that it is not zero in the case shown here is because the
sequences have been time aligned so that the action poten-
tials are generated at the same point in time—i.e., the selec-
tion of the time windows is biased.

With reduced noise intensity, we would expect that the
required reduction in R in order to produce an action poten-
tial will be harder to achieve. Figure 8 shows a similar plot
for half the noise level of Fig. 7, indicating that the required
increase in negative bias to R occurs over a longer time (in
this case the full 48 ms of the simulation). Conversely, in the
limit of large noise, we would expect that a spike could be
generated as a result of just a few random numbers being
significantly lower than their long term average—i.e., its on-
set could be extremely rapid. Equations (3.6) and (3.7) effec-
tively demonstrate this by their scaling of the p; and p,
terms, respectively. The equation for ¢, contains a term
(05/ T%)?p,, from which we conclude that a high value of o,
will lead to a high sensitivity of g,=R to any changes in p,.

E. Shape of action potential

Finally, we mention the average shape of the action
potential as a function of the time taken for the action
potential to occur (i.e., inverse spike rate). For the case
of I,,=21.475 uA cm™2, ¢,;=0.02 uA cm? ms"?, and o,
=0.02 ms'"?, we have carried out 40 000 simulations over
40 ms. Each simulation is started at the equilibrium value of
V and R. We then group the trajectories in terms of the time
taken for them to reach a threshold of —55 mV, and average
over each group. We do the same with the random input to
the recovery variable.

In Fig. 9 we show these averaged trajectories and noise
inputs. The mean trajectories form an envelope correspond-
ing to a slow time scale. For simulations that reach action
potential quickly, the mean membrane potentials rapidly rise
from their equilibrium (starting) values until they join this
envelope; the mean recovery variables rapidly fall until their
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FIG. 9. (Color online) A plot of the mean trajectories for the
approach to a firing event, for the case of I;,,=21.475 uA cm™2,
7=0.02 uA cm2 ms'?, and 0,=0.02 ms'2. A total of 7759 out of
40 000 simulations were accepted. (a) The mean membrane poten-
tial, grouped by time taken to fire. The dashed line indicate the
standard uncertainties in the mean for one trajectory; the other un-
certainties are lower than this. The groups are (in terms of time
before firing occurs): 5-10 ms (black), 10-15 ms (violet),
15-20 ms (blue), 20-25 ms (green), 25-30ms (yellow),
30-35 ms (orange), and 35-40 ms (red). Each sequence has been
time aligned so they reach the same value of V simultaneously. For
the 5—10 ms sequence, only the last 5 ms have been plotted so that
all sequences in the group contribute at every point in the graph;
similarly for the other sequences. (b) The mean recovery variable,
grouped in a similar way. (¢) The mean random input to the recov-
ery variable equation (3.2), over periods of 0.5 ms, with simulations
grouped in the same way as part (a).

envelope is reached. This gives rise to an “average” action
potential that is sharper in time for an action potential that
occurs soon after simulation starts. In principle, this is a pre-
diction that can be tested experimentally, though the analysis
only applies to subthreshold neurons (i.e., neurons not in a
limit-cycle behavior, but ones whose firing is triggered by
noise input). Experimentally, the shape of the action potential
as a function of time since the last action potential can be
examined. For example, we would expect that action poten-
tials which occur soon after their predecessor will have risen
very quickly; moreover, we could expect an exponential shift
in potential for spikes that have occurred a long time after
the previous one.

The mean noise input is also shown in the figure, demon-
strating that, for the case of neurons that fire an action po-
tential quickly, the average random input to the recovery
variable has been considerably lower than its long term av-
erage over this short period of time. Conversely, neurons that
have taken longer to fire, have “accumulated” this reduction
in inhibitory input gradually over a much longer period of
time. However, in all cases, there must be a similar drop in
the random input in the 2 ms preceding the spike. In terms of
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FIG. 10. (Color online) A plot of the mean trajectories for the
approach to a firing event, in terms of the deviation from equilib-
rium values, for the same case as Fig. 9. (a) The natural logarithm
of the mean deviation of the membrane potential from its equilib-
rium value, grouped by time taken to fire. The groups are (in terms
of time before firing occurs): 5—10 ms (black), 10—15 ms (violet),
15-20 ms (blue), 20-25ms (green), 25-30ms (yellow),
30-35 ms (orange), and 35—40 ms (red). Each sequence has been
time aligned so they reach the same value of V simultaneously. For
the 5—10 ms sequence, only the last 5 ms have been plotted so that
all sequences in the group contribute at every point in the graph;
similarly for the other sequences. (b) The natural logarithm of the
(negative) of the deviation of the mean recovery variable from its
equilibrium value, grouped in a similar way. (c) The natural loga-
rithm of the (negative) mean random input to the recovery variable
equation (3.2), over periods of 0.5 ms, with simulations grouped in
the same way as part (a).

p, this means that a small initial value of p in the Hamil-
tonian approach will represent a trajectory that takes a long
time to fire (i.e., the negative bias in p, accumulates more
slowly), whereas a high initial value of p gives rise to a
rapidly firing trajectory.

Figure 10 shows the same information in a logarithmic
form. From this graph we see that the limiting envelope for
the change in the membrane potential and recovery variables
from their equilibrium values AV and AR, respectively, are
approximately exponentials. Also, we see a similar behavior
in the noise input to the recovery variable—in the limit of
large times before the spike, the noise term changes in an
exponential manner. The growth rates for the potential and
recovery processes are similar, namely, around 0.08 ms~'.
These are higher than the slow eigenvalue of the matrix M
calculated numerically from Egs. (3.8) and (3.9) or, equiva-
lently, the Jacobian matrix of the linearized equations (3.1)
and (3.2), for a driving current of 21.475 wA cm~2, which is
0.020 ms~".

In order to reproduce the slow timescale of the matrix
M we have had to reduce the noise input to
0.005 uA cm™2 ms'? and 0.005 ms'? for ¢, and o, respec-
tively, and increase the time of simulation. Lower noise en-
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FIG. 11. (Color online) A plot of the mean trajectories for the
approach to a firing event, in terms of the deviation from equilib-
rium values, for the case of I,=21.475 uAcm?ms'? o
=0.005 uA cm™? ms'?, and 0,=0.005 ms'’2. A total of 1509 out of
10 000 simulations were accepted. (a) The natural logarithm of the
mean deviation of the membrane potential from its equilibrium
value, grouped by time taken to fire. The groups are (in terms of
time before firing occurs): 100—-200 ms (black), 200-300 ms
(blue), 300—400 ms (green), and 400—-500 ms (red). Each sequence
has been time-aligned so they reach the same value of V simulta-
neously. (b) The natural logarithm of the (negative) of the deviation
of the mean recovery variable from its equilibrium value, grouped
in a similar way. (c) The natural logarithm of the (negative) mean
random input to the recovery variable equation (3.2), with simula-
tions grouped in the same way as part (a). Note that this plot ex-
hibits a region of exponential growth with rate constant 0.020 ms™,
between 200 and 100 ms before the spike, in agreement with the
slow eigenvalue of matrix M.

sures that the subthreshold dynamics are more linear in na-
ture, so that Eq. (2.35) is more applicable. The same driving
current is used. In this situation, there is a very low probabil-
ity of the neuron firing, and in order to sample enough cases
for good statistics, we have required a run time of about
60 hours on an Intel Xeon processor (with clock speed of
2.7 GHz). In this case just 1509 out of a total of 10 000
simulations resulted in a firing within 500 ms. This time
frame is arguably at the limit of what might be considered
plausible for a gap between neuron firings during normal
cortical behavior. Figure 11 shows the manner in which AV,
AR and the noise input to the recovery process vary with
time as the spike is approached. In this case we observe that
the noise term also shows a region of exponential growth
with a similar gradient of 0.020 ms~!, in agreement with the
prediction of Eq. (2.35). However, the gradients of the V and
R processes are not quite what we would expect, being about
25% too low. This may indicate that the small fluctuations
approximation is still not valid.
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V. CONCLUSIONS

We have developed Lagrangian and Hamiltonian descrip-
tions of a stochastic process in N dimensions, and applied the
Hamiltonian form to the stochastic neuron model of Wilson.
While a Lagrangian analysis in the manner of Paninski [1] is
likely to be a better approach for analyzing membrane po-
tential fluctuations, the Hamiltonian form has allowed us to
give a physical interpretation to the neuron’s behavior on the
approach to an action potential. The conjugate momenta
variables are linear combinations of the noise inputs to the
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neuron; the theory predicts that the magnitudes of these in-
crease exponentially on the approach to a neural firing event,
which we have confirmed by simulation. Particularly, we find
that an exponentially increasing negative input to the inhibi-
tory recovery process is responsible for the firing event, in
agreement to the experimental results of Rudolph er al. [6].
In terms of the Hamiltonian description, we can therefore
consider an action potential as being the result of an expo-
nentially growing conjugate momentum pulling the system
away from a stable equilibrium into a nonlinear regime.
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